Definition

- A set $N \subset |\mathbb{K}|$ is called a null set if for any $\varepsilon \neq 0$, there exists a countable collection $\{(a_k, b_k)\}_{k=1}^{\infty}$ of open intervals such that $N \subset \bigcup_{k=1}^{\infty} (a_k, b_k)$ and $\sum_{k=1}^{\infty} (b_k \cdot a_k) < \varepsilon$.
 - · A property (P) holds admost everywhere if and only it (P) holds for all XEIR N where N is a null set.

Rock: We can replace the open intervals in the definition
by closed intervals since
$$(a_k, b_k) \subset [a_k, b_k] \subset (a_k - \frac{\xi}{2^k}, b_k + \frac{\xi}{2^k})$$

Example
Any constable set is a sull set.

$$pf: Write E = i \chi_k i_{k=1}^{\infty}$$
.
Take $(a_k, b_k) = (\chi_k - \frac{\varepsilon}{2^{k+1}}, \chi_k + \frac{\varepsilon}{2^{k+1}})$ with $\varepsilon' < \varepsilon$.
Then $b_k - a_k = \frac{\varepsilon'}{2^k}$.
Thus $\sum_{k=1}^{\infty} (b_k - a_k) = \sum_{k=1}^{\infty} \frac{\varepsilon'}{2^k} = \varepsilon' < \varepsilon$.

Proposition Let f be a nonnegative real function on [a,b]if $f \in R[a,b]$ and $\int_{a}^{b} f = \circ$, then $f = \circ$ almost everywhere.

Lemma A commtable union of null sets is still a null set. Pf: Let (En), be a constable collection of null sets. Fix E>0. For any NEW, since En is a null set, there exists a constable collection (In, k) =1 of open intervals such that En C U Ink and $\sum_{k=1}^{\infty} |I_{n,k}| < \frac{\varsigma}{2^{n}}.$ Now consider the collection of intervals $(I_{n,k})_{k,n=1}$. It is still a contable collection . (1050 Exercise!)

Moreover,
$$\bigcup_{n=1}^{\infty} \overline{E}_n \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} I_{n,k}$$
 and
 $\widetilde{\Sigma}_{n,k=1}^{\infty} |I_{n,k}| = \widetilde{\Sigma}_{n=1}^{\infty} \widetilde{\Sigma}_{k=1}^{\infty} |I_{n,k}| < \widetilde{\Sigma}_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon$.
 17

Pf of proposition:
We wish to show {
$$\pi \in [a, b]$$
: $f(x) \neq o$ } is a sull
set. Since f is nonnegative, it is equivalent
to show { $x \in [a, b]$: $f(x) \geq o$ } is a null set.
Note that { $x \in [a, b]$: $f(x) \geq o$ } = $\bigcup_{n=1}^{\infty} [x \in [a, b]$: $f(x) \geq \frac{1}{n} f(x)$
By Lemma, it suffices to show for any $n \in A$,
{ $x \in [a, b]$: $f(x) \geq \frac{1}{n}$ is a null set.
Actually, we can show $E = [x \in [a, b]: f(x) \geq c$ } is
a mult set for any $c \geq o$.
Suppose E is not a null set.
Then there exists $\varepsilon_0 \geq 0$ such that for any
countable cullection $(i_k)_{k=1}^{\infty}$ of closed intervals
T

subisefying
$$E \subset \bigcup_{k=1}^{\infty} J_{k}$$
, we have $\sum_{k=1}^{\infty} |J_{k}| > \varepsilon_{0}$.
Pick any partition $P=(x_{0}, x_{1}, ..., x_{n})$ of (a, b)
Let $I_{k} = [X_{k-1}, x_{k}]$
Since $\bigcup_{k=1}^{\infty} I_{k} = [a, b]$, $\bigcup_{k=1}^{\infty} J_{k} \supset E$.
Then $\sum_{k=1}^{n} |I_{k}| > \varepsilon_{0}$
 $U(f; P) = \sum_{k=1}^{n} \sup_{k=1}^{n} |f(x_{0}) : x \in [x_{k-1}, x_{k}] \} (x_{k} - x_{k-1})$
 $= \sum_{k=1}^{n} \sup_{k=1}^{n} |f(x_{0}) : x \in [x_{k-1}, x_{k}] \} (x_{k} - x_{k-1})$
 $f \sum_{k=1}^{n} \inf_{k=1}^{n} |f(x_{0}) : x \in [x_{k-1}, x_{k}] \} (x_{k} - x_{k-1})$
(f non-negative) $Z \sum_{k=1}^{n} \sup_{k=1}^{n} |f(x_{0}) : x \in [x_{k-1}, x_{k}] \} (x_{k} - x_{k-1})$
(def of E) $Z \subset \sum_{k=1}^{n} (x_{k} - x_{k-1})$
 $Z \in \varepsilon_{0} > 0$.

But
$$U(f) = \int_{a}^{b} f = 0$$

Contradiction!
Let f be nonnegative bounded read function.
Is $\int_{a}^{b} f = 0$ equivalent to $f = 0$ a.e.?
In Riemann Integral setting, the consumer is no.
Example: $f(x) = \begin{cases} 1, x \in Q \cap [0, 1], \\ 0, x \in Q \cap [1, 1]. \end{cases}$
Since Q is constable, thus a null set,
 $f = 0$ almost everywhere.
But $U(f) = 1 \neq 0 = L(f)$ by density of
 Q and Q^{c} . Therefore, $f \notin R[0, 1]$.
However, in Lebesgue Integral setting.
 $\int_{a}^{b} f = 0 \iff f = 0$ a.e.
for nonnegative f .
This is a reason for the development of Lebesgue Integral.