Definition

- A set $N \subset \mathbb{R}$ is called a null set if for any $\varepsilon>0$, there exists a countable collection $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{\infty}$ of open intervals such that $\mathcal{N} \subset \bigcup_{k=1}^{\infty}\left(a_{k}, b_{k}\right)$ and

$$
\sum_{k=1}^{\infty}\left(b_{k}-a_{k}\right)<\varepsilon .
$$

- A property (P) holds almost everywhere if and only it (P) holds for all $x \in \mathbb{R} \backslash \mathcal{N}$ where \mathbb{N} is a null set.

Rome: We cans replace the open intervals in the definition by closed intervals since $\left(a_{k}, b_{k}\right) \subset\left[a_{k}, b_{k}\right] \subset\left(a_{k}-\frac{\varepsilon}{2^{k}}, b_{k}+\frac{\varepsilon}{2^{k}}\right)$.

Example
Any countable set is a mull set.
Pf: Write $E=\left\{x_{k}\right\}_{k=1}^{\infty}$.
Take $\left(a_{k}, b_{k}\right)=\left(x_{k}-\frac{\varepsilon^{\prime}}{2^{k+1}}, x_{k}+\frac{\varepsilon^{\prime}}{2^{k+1}}\right)$ with $\varepsilon^{\prime}<\varepsilon$.
Then $b_{k}-a_{k}=\frac{\varepsilon^{\prime}}{2^{k}}$.
Thus $\quad \sum_{k=1}^{\infty}\left(b_{k}-a_{k}\right)=\sum_{k=1}^{\infty} \frac{\varepsilon^{\prime}}{2^{k}}=\varepsilon^{\prime}<\varepsilon$.

Proposition
Let f be a nonnegative real function on $[a, b]$. If $f \in R[a, b]$ and $\int_{a}^{b} f=0$, then $f=0$ almost everywhere.

Lemma
A countable union of null sets is still a null set.
Pf: Let $\left(E_{n}\right)_{n=1}^{\infty}$ be a countable collection of null sets.

Fix $\varepsilon>0$.
For any $n \in \mathbb{N}$, since E_{n} is a null set, there exists a conutable collection $\left(I_{n}, k\right)_{k=1}^{\infty}$ of open intervals such that $E_{n} \subset \bigcup_{k=1}^{\infty} I_{r, k}$ and

$$
\sum_{k=1}^{\infty}\left|I_{n, k}\right|<\frac{\varepsilon}{2^{n}} .
$$

Now consider the collection of intervals $\left(I_{n, k}\right)_{k, n=1}^{\infty}$. It is still a countable collection. (1050 Exercise!)

Moreover, $\bigcup_{n=1}^{\infty} E_{n} \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} I_{n, k}$ and

$$
\sum_{n, k=1}^{\infty}\left|I_{n, k}\right|=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left|I_{n, k}\right|<\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n}}=\varepsilon
$$

Pf of proposition:
We wish to show $\{x \in[a, b]: f(x) \neq 0\}$ is a null set. Since f is nonnegative, t is equivalent to show $\{x \in[a, b]: f(x)>0\}$ is a null set.

Note that $\{x \in[a, b]: f(x)>0\}=\bigcup_{n=1}^{\infty}\left\{x \in[a, b]: f(x)>\frac{1}{n}\right\}$
By Lemma, t suffices to show for any $n \in \mathbb{N}$, $\left\{x \in[a, b]: f(x)>\frac{1}{n}\right\}$ is a null set

Actually, we can show $E=\{x \in[a, b]: f(x)>c\}$ is a null set for any $c>0$.

Suppose E is not a null set.
Then there exists $\varepsilon_{0}>0$ such that for any countable collection $\left(J_{k}\right)_{k=1}^{\infty}$ of closed intervals \uparrow by Rok below Deft
satisfying $E \subset \bigcup_{k=1}^{\infty} J_{k}$, we have $\sum_{k=1}^{\infty}\left|J_{k}\right|>\varepsilon_{0}$. Pick any partition $P=\left(x_{0}, x_{1}, \ldots, x_{1}\right)$ of $[a, b]$

Let $I_{k}=\left[x_{k-1}, x_{k}\right]$
Since $\bigcup_{k=1}^{n} I_{k}=[a, b], \underset{k=I, \cap \in \neq \phi}{ } I_{k} \supset E$.
Then $\quad \sum_{k: \bar{L}_{k} V_{E} \neq \phi}\left|\bar{I}_{k}\right|>\varepsilon_{0}$

$$
\begin{aligned}
& U(f ; P)= \sum_{k=1}^{n} \sup \left\{f(x): x \in\left\{x_{k-1}, x_{k}\right]\right\}\left(x_{k}-x_{k}-1\right) \\
&= \sum_{k:=1} \sup _{n}\left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}\left(x_{k}-x_{k}-1\right) \\
&+\sum_{k=I_{k} \cap E \neq \phi} \sup \left\{f(x): x \in\left[x_{k}, x_{k}\right]\right\}\left(x_{k}-x_{k}\right) \\
&(f \text { non-negutive }) \geqslant \sum_{k: \mathbb{I}_{k} \cap \tilde{E} \neq \phi} \sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}\left(x_{k}-x_{k-1}\right) \\
&(\text { def of } E) \geqslant C \sum_{k: I_{k} \cap E \neq \phi}\left(x_{k}-x_{k-1}\right) \\
&>C \varepsilon_{0}>0 .
\end{aligned}
$$

Since for any partition P of $[a, b]$ $U(f ; P)>C \varepsilon_{0}$ where C, ε_{0} are independent of P, then $U(f)>c \varepsilon_{0}>0$.

But $U(f)=\int_{a}^{b} f=0$
Contradiction!

Let f be nonnegative bounded real function. Is $\int_{a}^{b} f=0$ equivalent to $f=0$ a.e.?

In Riemann Integral setting, the answer is no.
Example: $f(x)= \begin{cases}1, & x \in \mathbb{Q} \cap[0,1], \\ 0, & x \in \mathbb{Q}^{`} \cap[0,1] .\end{cases}$
Since \mathbb{Q} is countable, thus a null set, $f=0$ almost everywhere.
But $U(f)=1 \neq 0=L(f)$ by density of Q and \mathbb{Q}^{c}. Therefore, $f \notin R[0,1]$.

However, in Lebesgue Integral setting,

$$
\int_{a}^{b} f=0 \Leftrightarrow f=0 \quad \text { a.e. }
$$

for nonnegative f.
This is a reason for the development of Lebesgue Integral.

